Skip to content

Create Seamlines

voronoi_center_seamline(input_images, output_mask, *, image_field_name='image', min_point_spacing=10, min_cut_length=0, debug_logs=False, debug_vectors_path=None)

Generates a Voronoi-based seamline mask from edge-matching polygons (EMPs) and writes the result to a vector file.

Parameters:

Name Type Description Default
input_images (str | List[str], required)

Defines input files from a glob path, folder, or list of paths. Specify like: "/input/files/.tif", "/input/folder" (assumes .tif), ["/input/one.tif", "/input/two.tif"].

required
output_mask str

Output path for the final seamline polygon vector file.

required
min_point_spacing float

Minimum spacing between Voronoi seed points; default is 10.

10
min_cut_length float

Minimum cutline segment length to retain; default is 0.

0
debug_logs DebugLogs

Enables debug print statements if True; default is False.

False
image_field_name str

Name of the attribute field for image ID in output; default is 'image'.

'image'
debug_vectors_path str | None

Optional path to save debug layers (cutlines, intersections).

None
Outputs

Saves a polygon seamline layer to output_mask, and optionally saves intermediate cutlines to debug_vectors_path.

Source code in spectralmatch/seamline/voronoi_center_seamline.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def voronoi_center_seamline(
    input_images: Universal.CreateInFolderOrListFiles,
    output_mask: str,
    *,
    image_field_name: str = "image",
    min_point_spacing: float = 10,
    min_cut_length: float = 0,
    debug_logs: Universal.DebugLogs = False,
    debug_vectors_path: str | None = None,
) -> None:
    """
    Generates a Voronoi-based seamline mask from edge-matching polygons (EMPs) and writes the result to a vector file.

    Args:
        input_images (str | List[str], required): Defines input files from a glob path, folder, or list of paths. Specify like: "/input/files/*.tif", "/input/folder" (assumes *.tif), ["/input/one.tif", "/input/two.tif"].
        output_mask (str): Output path for the final seamline polygon vector file.
        min_point_spacing (float, optional): Minimum spacing between Voronoi seed points; default is 10.
        min_cut_length (float, optional): Minimum cutline segment length to retain; default is 0.
        debug_logs (Universal.DebugLogs, optional): Enables debug print statements if True; default is False.
        image_field_name (str, optional): Name of the attribute field for image ID in output; default is 'image'.
        debug_vectors_path (str | None, optional): Optional path to save debug layers (cutlines, intersections).

    Outputs:
        Saves a polygon seamline layer to `output_mask`, and optionally saves intermediate cutlines to `debug_vectors_path`.
    """

    print("Start voronoi center seamline")

    Universal.validate(
        input_images=input_images,
    )
    input_image_paths = _resolve_paths(
        "search", input_images, kwargs={"default_file_pattern": "*.tif"}
    )

    emps = []
    crs = None
    for p in input_image_paths:
        mask, transform = _read_mask(p, debug_logs)
        emp = _seamline_mask(mask, transform, debug_logs)
        emps.append(emp)
        if crs is None:
            with rasterio.open(p) as src:
                crs = src.crs

    for i, emp in enumerate(emps):
        if debug_logs:
            print(f"EMP{i}: area={emp.area:.2f}, bounds={emp.bounds}")

    cuts: List[LineString] = []
    for i, (a, b) in enumerate(combinations(emps, 2)):
        ov = a.intersection(b)
        if debug_logs:
            print(f"Overlap {i} area: {ov.area:.2f}")
        if not ov.is_empty:
            if debug_vectors_path:
                _save_intersection_points(a, b, debug_vectors_path, crs, f"{i}")
            cut = _compute_centerline(
                a,
                b,
                min_point_spacing,
                min_cut_length,
                debug_logs,
                crs,
                debug_vectors_path,
            )
            cuts.append(cut)

    # Optionally save cutlines
    if debug_vectors_path:
        schema = {"geometry": "LineString", "properties": {"pair_id": "str"}}
        with fiona.open(
            debug_vectors_path,
            "w",
            driver="GPKG",
            crs=crs,
            schema=schema,
            layer="cutlines",
        ) as dst:
            for idx, line in enumerate(cuts):
                dst.write(
                    {
                        "geometry": mapping(line),
                        "properties": {"pair_id": f"{idx}"},
                    }
                )

    segmented: List[Polygon] = []
    for idx, emp in enumerate(emps):
        relevant = [c for c in cuts if emp.intersects(c)]
        seg = _segment_emp(emp, relevant, debug_logs)
        if debug_logs:
            print(
                f"EMP{idx} has {len(relevant)} intersecting cuts and {seg.area:.2f} segmented area"
            )
        segmented.append(seg)

    schema = {"geometry": "Polygon", "properties": {image_field_name: "str"}}
    with fiona.open(
        output_mask, "w", driver="GPKG", crs=crs, schema=schema, layer="seamlines"
    ) as dst:
        for img, poly in zip(input_image_paths, segmented):
            dst.write(
                {
                    "geometry": mapping(poly),
                    "properties": {
                        image_field_name: os.path.splitext(os.path.basename(img))[0]
                    },
                }
            )